ICC 2017 Washington D.C, USA July 02-07, 2017

Implementing the Concept of Geographic Context for Efficient Recognition from Large-Scale Topographic Map Series

Johannes H. Uhl¹

Research Team:

Stefan Leyk¹, Yao-Yi Chiang², Weiwei Duan³, Vinil Jain², Dan Feldman², Craig Knoblock³

¹ Department of Geography University of Colorado Boulder ² Spatial Sciences Institute University of Southern California ³ Computer Science Department University of Southern California

I MAP PROCESSING: IMPACT & CHALLENGES

II THE PRINCIPLE OF GEOGRAPHIC CONTEXT

III CASE STUDY:

Recognition of Buildings and Urban Areas in Historical Topographic Maps

Map Processing: Impact & Challenges

Geographic Context & Map Processing

A Case Study and Outlook

I Map Processing: Impact & Challenges

Map Processing: Impact & Challenges

(a) Military Geographical Institute, Poland 1930, 1:25K

(b) Royal Prussian Surveying Unit, Map of Western Russia, 1915, 1:100K

(c) Imperial and Royal Military Geographical Institute, Austria, Map of the Austrian-Hungarian Monarchy and foreign map pages, Russia, 1878, 1:75K

(d) Swiss Federal Topographic Bureau, Swiss Topographic Map (Siegfried Map), 1912, 1:25K

Preserving unique witnesses of the past
 unlocking geographic information

Map Processing: Impact & Challenges

- Map processing = Recognition + Extraction
- Pattern recognition, computer vision, machine learning...
- Creating GIS-readable data from scanned map archives
- Retrospective Landscape Analysis
- Historians, Geographers, Demographers, Landscape Ecologists, etc...

- Map processing = Recognition + Extraction
- Pattern recognition, computer vision, machine learning...
- Creating GIS-readable data from scanned map archives
- Retrospective Landscape Analysis
- Historians, Geographers, Demographers, Landscape Ecologists, etc...

Map Processing: Impact & Challenges

Complexity, graphical quality, data volume
 User interaction → Low levels of automation in information extraction

- Complexity, graphical quality, data volume
 User interaction → Low levels of automation
- Oser interaction → Low levels of automatic in information extraction

- Complexity, graphical quality, data volume
- User interaction → Low levels of automation in information extraction

Map recognition involving user interaction:

How to overcome user labeling to achieve higher levels of automation?

II The Principle of Geographic Context

Effective use of external (geographic) data for improved information extraction from maps

- Map series in digital archives
- Large data volume
- Dependent editions with incremental change (updates)
- Overlap in content to guide learning?

- Map series in digital archives
- Large data volume
- Dependent editions with incremental change (updates)
- Overlap in content to guide learning?

- Map series in digital archives
- Large data volume
- Dependent editions with incremental change (updates)
- Overlap in content to guide learning?

- Map series in digital archives
- Large data volume
- Dependent editions with incremental change (updates)
- Overlap in content to guide learning?

- Map series in digital archives
- Large data volume
- Dependent editions with incremental change (updates)
- Overlap in content to guide learning?

- Map series in digital archives
- Large data volume
- Dependent editions with incremental change (updates)
- Overlap in content to guide learning?

- Map series in digital archives
- Large data volume
- Dependent editions with incremental change (updates)
- Overlap in content to guide learning?
- Generic (not independent) ancillary data representing feature of interest
- Know "where to expect" the feature of interest

- Geometry
- Attributes

- Geometry
- Attributes

- Geometry
- Attributes

- Geometry
- Attributes
- (2) Adaptive graphics sampling
 - Collect spatially constrained graphics examples
 - Assume overlap: map & context

- Geometry
- Attributes
- (2) Adaptive graphics sampling
 - Collect spatially constrained graphics examples
 - Assume overlap: map & context

- Geometry
- Attributes
- (2) Adaptive graphics sampling
 - Collect spatially constrained graphics examples
 - Assume overlap: map & context

(1) Creating contextual information

- Geometry
- Attributes
- (2) Adaptive graphics sampling
 - Collect spatially constrained graphics examples
 - Assume overlap: map & context

(3) Compute feature descriptors: Create knowledge base

- Shape, color, texture descriptors
- To be used in learning and extraction

(1) Creating contextual information

- Geometry
- Attributes
- (2) Adaptive graphics sampling
 - Collect spatially constrained graphics examples
 - Assume overlap: map & context
- (3) Compute feature descriptors: Create knowledge base
 - Shape, color, texture descriptors
 - To be used in learning and extraction

Step (1) and (2): Eliminate user interaction

III Case Study

Geographic context for automated map symbol recognition: Buildings and Urban Areas

Geographic Context Buildings

=====

Geographic Context Buildings

Spatial offsets Temporal inconsistencies Generalization effects

- Preprocessing
- Graphics sampling
- Sample cleaning
- Learning
- Recognition
- Extracted buildings & urban areas

Geographic Context Buildings

Spatial offsets Temporal inconsistencies Generalization effects

Distortions introduced during georeferencing

Distortions introduced during georeferencing

Guided Graphics Sampling

"Cleaning" the samples...

...using image processing / computer vision techniques

t-distributed stochastic neighbor embedding (t-SNE) plots for visual quality assessment

t-distributed stochastic neighbor embedding (t-SNE) plots for visual quality assessment

t-distributed stochastic neighbor embedding (t-SNE) plots for visual quality assessment

Case Study: Building and Urban Area Extraction

Label w/ max probability, prediction using stride=20

No building Single building urban

Percentage of correctly classified (PCC) = 0.81

 $\mathcal{A}_{\mathcal{P}}$

Kappa index = 0.66

Normalized Mutual Information (NMI) = 0.46

Class	Precision	Recall
No buildings	0.98	0.70
Urban area	0.85	0.98
Individual buildings	0.06	0.99

Label w/ max probability, prediction using stride=20

No building Single building urban

- Percentage of correctly classified (PCC) = 0.81
- Kappa index = 0.66
- Normalized Mutual Information (NMI) = 0.46

Class	Precision	Recall
No buildings	0.98	0.70
Urban area	0.85	0.98
Individual buildings	0.06	0.99

- Label w/ max probability, prediction using stride=20 No building Single building urban
- Percentage of correctly classified (PCC) = 0.81

Kappa index = 0.66

Normalized Mutual Information (NMI) = 0.46

Discussion

Availability of contextual geographic data + machine learning:

- Great potential for fully automatic map recognition
- External (but not independent) contextual information:
 - Efficiently guides graphics sampling

Elimination of user intervention:

Necessary to exploit large volumes of digital historical map archives

Acknowledgements

US National Science Foundation award IIS 1563933 to the University of Colorado at Boulder and IIS 1564164 to the University of Southern California

"Exploiting Context in Cartographic Evolutionary Documents to Extract and Build Linked Spatial-temporal Datasets"

Additional material

Guided Graphics Sampling

Guided Graphics Sampling

- → Maxima in the difference of Gaussian (DoG) scale space
- → DoG max at the center of a building

→ Graphics samples as input data for **convolutional neural network**

Case Study: Building and Urban Area Extraction