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| MAP PROCESSING: IMPACT & CHALLENGES

I THE PRINCIPLE OF GEOGRAPHIC CONTEXT

Il CASE STUDY:

Recognition of Buildings and Urban Areas in
Historical Topographic Maps
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The Impact of I\/Iap Processmg

(a) Military Geographical Institute,
Poland 1930, 1:25K

(b) Royal Prussian Surveying Unit,
Map of Western Russia, 1915,
1:100K

(c) Imperial and Royal Military
Geographical Institute, Austria, Map
of the Austrian-Hungarian Monarchy
and foreign map pages, Russia,
1878, 1:75K

(d) Swiss Federal Topographic
Bureau, Swiss Topographic Map
(Slegfned Map), 1912, 1:25K

—Preserving unique W|tnesses of the past

%unlocking geograehic information
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Current Challenges in Map
Processing

Map recognition involving user interaction:

»

shape, color & gradient
descriptors :

How to overcome user labeling to achieve higher levels of automation?




Il The Principle of
Geographic Context

Effective use of external (geographic) data for
iImproved information extraction from maps
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= Map series in digital archives
= Large data volume

= Dependent editions with
incremental change (updates)

= Qverlap in content to guide
learning?

= Generic (not independent)
ancillary data representing feature
of interest

= Know “where to expect” the
feature of interest
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Information Extraction &
Geographic Context

(1) Creating contextual information

= Geometry
= Attributes

(2) Adaptive graphics sampling
= Collect spatially constrained graphics examples
= Assume overlap: map & context

(3) Compute feature descriptors: Create
knowledge base
= Shape, color, texture descriptors
= To be used in learning and extraction

Step (1) and (2): Eliminate user interaction



Il Case Study

Geographic context for automated map symbol
recognition: Buildings and Urban Areas
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Geographic
Context
Buildings

ISTQrICal.

Spatial offsets
Temporal inconsistencies
Generalization effects
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Temporal inconsistencies
Generalization effects
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Distortions introduced
during georeferencing




Discrepancies between contextual
and map data

19 8.‘%744 23.073916 : - Spatlal OffsetS

10m
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Temporal inconsistencies
Generalization effects

-0.245737

Distortions introduced
during georeferencing
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Color reduction
RGB sample Gaussian blur (20px) (k-means clustering, k=2)

“Cleaning”
the samples...

grayscale Gaussian blur (15px) Emphasize dark pixels: SIFT keypoint detection
Invert pixel values< 90

...using image processing / computer vision techniques




Clean graphic samples
for learning process




Clean graphic samples
for learning process

t-distributed stochastic neighbor
embedding (t-SNE) plots for
visual quality assessment



Clean graphic samples
for Iearnlng process
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t-distributed stochastic neighbor
embedding (t-SNE) plots for
visual quality assessment




Clean graphic samples
for learning process

N\ S 2
Ba e 038l his st pumm e =it- - T
[ XN TR O e T N ITRRY
[} uO,d{i'ﬂ"‘i! T eal®.
:L_"‘,/" -n‘-ﬂ. .

- .o - -}--|Ivni-.¢‘§—t

\
| \ * 8 “ s = = [ ]
:-pﬁﬁu \_o-
" ® 8 & s s 8= l\
nl- . ././l-r-.\.
L] n/‘ e ® & =

L]
. -.-oo\f"‘

L ]

z,
- "C‘jo " . lp

:Al'

J 3
_‘--g
= & s & = % &

o

:-:1' -
1|

o
)
.\<
(
L

LN
\
=

. r‘/ .
= -_»"i\:“r—

It

=
/e a0
U

LN B Y

o‘.;-
folof o

7

" i .
44.‘ oo\ s-d
J’ 2/.-‘-/,- y
Fi";o = 8
b A
ofe
o _Themg "
|5
“ * o

s e

~ w2

T h

O W

& T -

.
S
L]
| = 7@
| "

,.th 4 Tole _liLf-_i:\o
P
olem

(g_r- -lt./l)_c 0\_.;/
\A{r[- *
124

|
—al g g
e
Z

s/e s n
‘.r“],l B (n -

R
. & n
Kt

t-distributed stochastic neighbor
embedding (t-SNE) plots for
visual quality assessment

" . A - e , ..

hotla :’:{J{_.x)’ ;\%é’ﬂ%1,qf/o ‘-5.{[ N AN .lop”o .
AT AR /AR R U ISR T5 C 2 I i € )

A Y AR At e RNl
—

¥ v s0hsE . < - — |, AT '
l‘ll\’\"l‘\ﬁ../f./}.}.ll




Feature extraction based on
convolutional neural networks |.




Feature extraction based on
convolutional neural networks |.




Feature extraction based on
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Convolution + RelLU
20x5x5

Convolution + RelLU

© 50x15x15
© R
T
- <
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't r
MaxPooling
2x2
MaxPooling

2X2

LeNet architecture

Fully connected
+ ReLU (500)

Fully connected
+ SoftMax (3)

Class scores
(urban,
single bldg.,
no building)
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Label w/ max probability,
i prediction using stride=20
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Discussion

= Availability of contextual geographic data + machine learning:
= Great potential for fully automatic map recognition

= External (but not independent) contextual information:
= Efficiently guides graphics sampling
= Elimination of user intervention:
= Necessary to exploit large volumes of digital historical map archives
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Negative samples
No building
33 .;%

Building
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- Sample of 10,000 graphics labels
- Oversampling urban and single building to N=10,000
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- Sample of 10,000 graphics labels
- Oversampling urban and single building to N=10,000
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- Graphics samples as input data for convolutional neural network




